首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Evolutionary Insight into the Clock-Associated PRR5 Transcriptional Network of Flowering Plants
  • 本地全文:下载
  • 作者:Yosuke Toda ; Toru Kudo ; Toshinori Kinoshita
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-019-39720-2
  • 出版社:Springer Nature
  • 摘要:Circadian clocks regulate the daily timing of metabolic, physiological, and behavioral activities to adapt organisms to day-night cycles. In the model plant Arabidopsis thaliana, transcript-translational feedback loops (TTFL) constitute the circadian clock, which is conserved among flowering plants. Arabidopsis TTFL directly regulates key genes in the clock-output pathways, whereas the pathways for clock-output control in other plants is largely unknown. Here, we propose that the transcriptional networks of clock-associated pseudo-response regulators (PRRs) are conserved among flowering plants. Most PRR genes from Arabidopsis, poplar, and rice encode potential transcriptional repressors. The PRR5-target-like gene group includes genes that encode key transcription factors for flowering time regulation, cell elongation, and chloroplast gene expression. The 5'-upstream regions of PRR5-target-like genes from poplar and rice tend to contain G-box-like elements that are potentially recognized by PRRs in vivo as has been shown in Arabidopsis. Expression of PRR5-target-like genes from poplar and rice tends to decrease when PRRs are expressed, possibly suggesting that the transcriptional network of PRRs is evolutionarily conserved in these plants.
国家哲学社会科学文献中心版权所有