首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Linking Binary Gene Relationships to Drivers of Renal Cell Carcinoma Reveals Convergent Function in Alternate Tumor Progression Paths
  • 本地全文:下载
  • 作者:William L. Poehlman ; James J. Hsieh ; F. Alex Feltus
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-019-39875-y
  • 出版社:Springer Nature
  • 摘要:Renal cell carcinoma (RCC) subtypes are characterized by distinct molecular profiles. Using RNA expression profiles from 1,009 RCC samples, we constructed a condition-annotated gene coexpression network (GCN). The RCC GCN contains binary gene coexpression relationships (edges) specific to conditions including RCC subtype and tumor stage. As an application of this resource, we discovered RCC GCN edges and modules that were associated with genetic lesions in known RCC driver genes, including VHL, a common initiating clear cell RCC (ccRCC) genetic lesion, and PBRM1 and BAP1 which are early genetic lesions in the Braided Cancer River Model (BCRM). Since ccRCC tumors with PBRM1 mutations respond to targeted therapy differently than tumors with BAP1 mutations, we focused on ccRCC-specific edges associated with tumors that exhibit alternate mutation profiles: VHL-PBRM1 or VHL-BAP1. We found specific blends molecular functions associated with these two mutation paths. Despite these mutation-associated edges having unique genes, they were enriched for the same immunological functions suggesting a convergent functional role for alternate gene sets consistent with the BCRM. The condition annotated RCC GCN described herein is a novel data mining resource for the assignment of polygenic biomarkers and their relationships to RCC tumors with specific molecular and mutational profiles.
国家哲学社会科学文献中心版权所有