首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:DESTINI: A deep-learning approach to contact-driven protein structure prediction
  • 本地全文:下载
  • 作者:Mu Gao ; Hongyi Zhou ; Jeffrey Skolnick
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-13
  • DOI:10.1038/s41598-019-40314-1
  • 出版社:Springer Nature
  • 摘要:The amino acid sequence of a protein encodes the blueprint of its native structure. To predict the corresponding structural fold from the protein's sequence is one of most challenging problems in computational biology. In this work, we introduce DESTINI (deep structural inference for proteins), a novel computational approach that combines a deep-learning algorithm for protein residue/residue contact prediction with template-based structural modelling. For the first time, the significantly improved predictive ability is demonstrated in the large-scale tertiary structure prediction of over 1,200 single-domain proteins. DESTINI successfully predicts the tertiary structure of four times the number of "hard" targets (those with poor quality templates) that were previously intractable, viz, a "glass-ceiling" for previous template-based approaches, and also improves model quality for "easy" targets (those with good quality templates). The significantly better performance by DESTINI is largely due to the incorporation of better contact prediction into template modelling. To understand why deep-learning accomplishes more accurate contact prediction, systematic clustering reveals that deep-learning predicts coherent, native-like contact patterns compared to co-evolutionary analysis. Taken together, this work presents a promising strategy towards solving the protein structure prediction problem.
国家哲学社会科学文献中心版权所有