首页    期刊浏览 2025年08月24日 星期日
登录注册

文章基本信息

  • 标题:Circuit-Based Quantum Random Access Memory for Classical Data
  • 本地全文:下载
  • 作者:Daniel K. Park ; Francesco Petruccione ; June-Koo Kevin Rhee
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-8
  • DOI:10.1038/s41598-019-40439-3
  • 出版社:Springer Nature
  • 摘要:A prerequisite for many quantum information processing tasks to truly surpass classical approaches is an efficient procedure to encode classical data in quantum superposition states. In this work, we present a circuit-based flip-flop quantum random access memory to construct a quantum database of classical information in a systematic and flexible way. For registering or updating classical data consisting of M entries, each represented by n bits, the method requires O(n) qubits and O(Mn) steps. With post-selection at an additional cost, our method can also store continuous data as probability amplitudes. As an example, we present a procedure to convert classical training data for a quantum supervised learning algorithm to a quantum state. Further improvements can be achieved by reducing the number of state preparation queries with the introduction of quantum forking.
国家哲学社会科学文献中心版权所有