首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:1,8-diiodooctane acts as a photo-acid in organic solar cells
  • 本地全文:下载
  • 作者:Nutifafa Y. Doumon ; Gongbao Wang ; Xinkai Qiu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-14
  • DOI:10.1038/s41598-019-40948-1
  • 出版社:Springer Nature
  • 摘要:The last decade saw myriad new donor polymers, among which benzodithiophene-co-thienothiophene polymers are attractive due to their relatively high power conversion efficiency in bulk heterojunction solar cells. We examine the effect of UV-light on the stability of these polymers. The relationship between the polymer chemical structure and the UV-stability of the cells is explored on the one hand, and on the other hand, the effect of additives on their UV-stability: 1,8-diiodooctane against 1-chloronaphthalene in the cells and 1,8-octanedithiol in solution. For example, PBDTTT-E with 18% efficiency loss is more stable than PBDTTT-ET with 36% loss throughout the exposure. While 1,8-diiodooctane acts as photo-acid and leads to accelerated degradation of the solar cells, 1-chloronaphthalene does not. Acidity is known to be detrimental to the efficiency and stability of organic solar cells. The degradation is initiated upon UV-irradiation by the cleavage of the side chains, resulting in more electron traps and by the formation of iodine, dissolved HI and carbon-centered radicals from 1,8-diiodooctane as revealed by 1 H NMR spectrum. The 1,8-octanedithiol spectra do not show such species. Finally, the mechanisms behind the effect of 1,8-diiodooctane are explained, paving the way for the design of new, efficient as well as stable materials and additives.
国家哲学社会科学文献中心版权所有