首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:The BRAF-inhibitor PLX4720 inhibits CXCL8 secretion in BRAFV600E mutated and normal thyroid cells: a further anti-cancer effect of BRAF-inhibitors
  • 本地全文:下载
  • 作者:Francesca Coperchini ; Laura Croce ; Marco Denegri
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-019-40818-w
  • 出版社:Springer Nature
  • 摘要:CXCL8 is a chemokine secreted by normal and thyroid cancer cells with proven tumor-promoting effects. The presence of BRAFV600E mutation is associated with a more aggressive clinical behavior and increased ability to secrete CXCL8 by papillary-thyroid-cancer cells. Aim of this study was to test the effect of the BRAF-inhibitor (PLX4720) on the basal and TNF-α-induced CXCL8 secretions in BRAFV600E mutated (BCPAP, 8305C, 8505C), in RET/PTC rearranged (TPC-1) thyroid-cancer-cell-lines and in normal-human-thyrocytes (NHT). Cells were incubated with increasing concentrations of PLX4720 alone or in combination with TNF-α for 24-hours. CXCL8 concentrations were measured in the cell supernatants. PLX4720 dose-dependently inhibited the basal and the TNF-α-induced CXCL8 secretions in BCPAP (F: 14.3, p < 0.0001 for basal and F: 12.29 p < 0.0001 for TNF-α), 8305C (F: 407.9 p < 0.0001 for basal and F: 5.76 p < 0.0001 for TNF-α) and 8505C (F:55.24 p < 0.0001 for basal and F: 42.85 p < 0.0001 for TNF-α). No effect was found in TPC-1 (F: 1.8, p = 0.134 for basal; F: 1.6, p = 0.178 for TNF-α). In NHT an inhibitory effect was found only at the highest concentration of PLX4720 (F: 13.13 p < 0.001 for basal and F: 2.5 p < 0.01 for TNF-α). Cell migration assays showed that PLX4720 reduced both basal and CXCL8-induced cell migration in BCPAP, 8305C, 8505C and NHT but not in TPC-1 cells. These results constitutes the first demonstration that PLX4720 is able to inhibit the secretion of CXCL8 in BRAFV600E mutated thyroid cancer cells indicating that, at least some, of the anti-tumor activities of PLX4720 could be exerted through a lowering of CXCL8 in the thyroid-cancer-microenvironment.
国家哲学社会科学文献中心版权所有