首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Streptococcus pneumoniae Cell Wall-Localized Trigger Factor Elicits a Protective Immune Response and Contributes to Bacterial Adhesion to the Host
  • 本地全文:下载
  • 作者:Aviad Cohen ; Shani Troib ; Shahar Dotan
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-40779-0
  • 出版社:Springer Nature
  • 摘要:Trigger factor (TF) has a known cytoplasmic function as a chaperone. In a previous study we showed that pneumococcal TF is also cell-wall localized and this finding combined with the immunogenic characteristic of TF, has led us to determine the vaccine potential of TF and decipher its involvement in pneumococcal pathogenesis. Bioinformatic analysis revealed that TF is conserved among pneumococci and has no human homologue. Immunization of mice with recombinant (r)TF elicited a protective immune response against a pneumococcal challenge, suggesting that TF contributes to pneumococcal pathogenesis. Indeed, rTF and an anti-rTF antiserum inhibited bacterial adhesion to human lung derived epithelial cells, indicating that TF contributes to the bacterial adhesion to the host. Moreover, bacteria lacking TF demonstrated reduced adhesion, in vitro, to lung-derived epithelial cells, neural cells and glial cells. The reduced adhesion could be restored by chromosomal complementation. Furthermore, bacteria lacking TF demonstrated significantly reduced virulence in a mouse model. Taken together, the ability of rTF to elicit a protective immune response, involvement of TF in bacterial adhesion, conservation of the protein among pneumococcal strains and the lack of human homologue, all suggest that rTF can be considered as a future candidate vaccine with a much broader coverage as compared to the currently available pneumococcal vaccines.
国家哲学社会科学文献中心版权所有