摘要:The p27/kip1 (p27) tumor suppressor inhibits cyclin/cyclin-dependent kinase (CDK) complexes and halts cell cycle progression. p27 further regulates invasion and migration in cancer cells, suggesting p27 also functions as an oncoprotein. Using a human osteosarcoma tissue microarray we identified high expression of cytoplasmic p27 in metastatic tumors. We demonstrated a positive correlation between mRNA and protein expression of p27 and expression of key metastatic markers, vimentin, snail-2, β-catenin and stathmin-1 (STMN1) in patient tumors. Our results show that T198 phosphorylation of p27 controls the interaction between p27 and STMN1 that regulates microtubule stabilization and the invasion and migration of osteosarcoma cells. We found that anti-tumoral activity of gemcitabine and the Wee1 kinase inhibitor AZD1775 in osteosarcoma cells, was dependent on drug sequencing that relied on p27 stabilization. Gemcitabine activated caspase-3 and synergized with AZD1775 through caspase-mediated cleavage of p27, that dissociated from STMN1 and effectively induced apoptosis. Further, blockage of nuclear export of p27 by inhibition of Exportin-1 (XPO1) promoted growth arrest, demonstrating that the biological effects of agents relied on the expression and localization of p27. Together, these data provide a rationale for combining chemotherapy with agents that promote p27 tumor suppressor activity for the treatment of osteosarcoma.