首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Azithromycin resistance levels and mechanisms in Escherichia coli
  • 本地全文:下载
  • 作者:Cláudia Gomes ; Lidia Ruiz-Roldán ; Judit Mateu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-019-42423-3
  • 出版社:Springer Nature
  • 摘要:Despite azithromycin being used in some countries to treat infections caused by Gram-negative pathogens, no resistance breakpoint for Escherichia coli exists. The aim of this study was to analyse the levels and mechanisms of azithromycin resistance in E. coli. The presence of chromosomal (rplD, rplV and 23S rRNA) mutations, 10 macrolide resistance genes (MRGs) and efflux pump overexpression was determined in 343 E. coli isolates. Overall, 89 (25.9%) isolates had MICs ≥ 32 mg/L to azithromycin, decreasing to 42 (12.2%) when assayed in the presence of Phe-Arg-β-Napthylamide, with 35 of these 42 possessing at least one MRG. Efflux pumps played a role in azithromycin resistance affecting the Minimal Inhibitory Concentration (MIC) levels of 91.2% isolates whereas chromosomal alterations seem to have a minimal role. At least one MRG was found in 22.7% of the isolates with mph(A) being the most commonly found gene. The mph(A) gene plays the main role in the development of azithromycin resistance and 93% of the mph(A)-carrying isolates showed a MIC of 32 mg/L. In the absence of a specific resistance breakpoint our results suggest a MIC of 32 mg/L to be considered in order to detect isolates carrying mechanisms able to confer azithromycin resistance.
国家哲学社会科学文献中心版权所有