首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Optical intrinsic signal imaging with optogenetics reveals functional cortico-cortical connectivity at the columnar level in living macaques
  • 本地全文:下载
  • 作者:Yu Nakamichi ; Kai Okubo ; Takayuki Sato
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-019-42923-2
  • 出版社:Springer Nature
  • 摘要:Despite extensive research on primate cognitive function, understanding how anatomical connectivity at a neural circuit level relates to information transformation across different cortical areas remains primitive. New technology is needed to visualize inter-areal anatomical connectivity in living monkeys and to tie this directly to neurophysiological function. Here, we developed a novel method to investigate this structure-function relationship, by combining optical intrinsic signal imaging (OISI) with optogenetic stimulation in living monkeys (opto-OISI). The method involves expressing channelrhodophsin-2 in one area (source) followed by optical imaging of optogenetic activations in the other area (target). We successfully demonstrated the potential of the method with interhemispheric columnar projection patterns between V1/V2 border regions. Unlike the combination of optogenetics and functional magnetic resonance imaging (opto-fMRI), opto-OISI has the advantage of enabling us to detect responses of small clusters of neurons, even if the clusters are sparsely distributed. We suggest that opto-OISI can be a powerful approach to understanding cognitive function at the neural circuit level, directly linking inter-areal circuitry to fine-scale structure and function.
国家哲学社会科学文献中心版权所有