首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:QAOA for Max-Cut requires hundreds of qubits for quantum speed-up
  • 本地全文:下载
  • 作者:G. G. Guerreschi ; A. Y. Matsuura
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-7
  • DOI:10.1038/s41598-019-43176-9
  • 出版社:Springer Nature
  • 摘要:Computational quantum technologies are entering a new phase in which noisy intermediate-scale quantum computers are available, but are still too small to benefit from active error correction. Even with a finite coherence budget to invest in quantum information processing, noisy devices with about 50 qubits are expected to experimentally demonstrate quantum supremacy in the next few years. Defined in terms of artificial tasks, current proposals for quantum supremacy, even if successful, will not help to provide solutions to practical problems. Instead, we believe that future users of quantum computers are interested in actual applications and that noisy quantum devices may still provide value by approximately solving hard combinatorial problems via hybrid classical-quantum algorithms. To lower bound the size of quantum computers with practical utility, we perform realistic simulations of the Quantum Approximate Optimization Algorithm and conclude that quantum speedup will not be attainable, at least for a representative combinatorial problem, until several hundreds of qubits are available.
国家哲学社会科学文献中心版权所有