首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Plasmonic colours predicted by deep learning
  • 本地全文:下载
  • 作者:Joshua Baxter ; Antonino Calà Lesina ; Jean-Michel Guay
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-019-44522-7
  • 出版社:Springer Nature
  • 摘要:Picosecond laser pulses have been used as a surface colouring technique for noble metals, where the colours result from plasmonic resonances in the metallic nanoparticles created and redeposited on the surface by ablation and deposition processes. This technology provides two datasets which we use to train artificial neural networks, data from the experiment itself (laser parameters vs. colours) and data from the corresponding numerical simulations (geometric parameters vs. colours). We apply deep learning to predict the colour in both cases. We also propose a method for the solution of the inverse problem - wherein the geometric parameters and the laser parameters are predicted from colour - using an iterative multivariable inverse design method.
国家哲学社会科学文献中心版权所有