首页    期刊浏览 2024年09月19日 星期四
登录注册

文章基本信息

  • 标题:A structural and biochemical comparison of Ribonuclease E homologues from pathogenic bacteria highlights species-specific properties
  • 本地全文:下载
  • 作者:Charlotte E. Mardle ; Thomas J. Shakespeare ; Louise E. Butt
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-019-44385-y
  • 出版社:Springer Nature
  • 摘要:Regulation of gene expression through processing and turnover of RNA is a key mechanism that allows bacteria to rapidly adapt to changing environmental conditions. Consequently, RNA degrading enzymes (ribonucleases; RNases) such as the endoribonuclease RNase E, frequently play critical roles in pathogenic bacterial virulence and are potential antibacterial targets. RNase E consists of a highly conserved catalytic domain and a variable non-catalytic domain that functions as the structural scaffold for the multienzyme degradosome complex. Despite conservation of the catalytic domain, a recent study identified differences in the response of RNase E homologues from different species to the same inhibitory compound(s). While RNase E from Escherichia coli has been well-characterised, far less is known about RNase E homologues from other bacterial species. In this study, we structurally and biochemically characterise the RNase E catalytic domains from four pathogenic bacteria: Yersinia pestis, Francisella tularensis, Burkholderia pseudomallei and Acinetobacter baumannii, with a view to exploiting RNase E as an antibacterial target. Bioinformatics, small-angle x-ray scattering and biochemical RNA cleavage assays reveal globally similar structural and catalytic properties. Surprisingly, subtle species-specific differences in both structure and substrate specificity were also identified that may be important for the development of effective antibacterial drugs targeting RNase E.
国家哲学社会科学文献中心版权所有