摘要:Strongly correlated electronic systems can harbor a rich variety of quantum spin states. Understanding and controlling such spin states in quantum materials is of great current interest. Focusing on the simple binary system UPt 3 with ultrasound (US) as a probe we identify clear signatures in field sweeps demarkating new high field spin phases. Magnetostriction (MS) measurements performed up to 65 T also show signatures at the same fields confirming these phase transitions. At the very lowest temperatures (<200 mK) we also observe magneto-acoustic quantum oscillations which for θ = 90° (B c-axis) and vicinity abruptly become very strong in the 24.8-30 T range. High resolution magnetization measurements for this same angle reveal a continuous variation of the magnetization implying the subtle nature of the implied transitions. With B rotated away from the c-axis, the US signatures occur at nearly the same field. These transitions merge with the separate sequence of the well known metamagnetic transition which commences at 20 T for θ = 0° but moves to higher fields as 1/cosθ. This merge, suggesting a tricritical behavior, occurs at θ ≈ 51° from the ab-plane. This is an unique off-symmetry angle where the length change along the c-axis is precisely zero due to the anisotropic nature of MS in UPt 3 for all magnetic field values.