摘要:Soy isoflavones, particularly genistein, have been shown to exhibit anti-obesity effects. When compared with the isoflavones genistin, daidzin, coumestrol, genistein, daidzein, 6-o-dihydroxyisoflavone, equol, 3'-o-dihydroxyisoflavone, and 8-o-dihydroxyisoflavone, a remarkably higher inhibitory effect on lipid accumulation was observed for orobol treatment during adipogenesis in 3T3-L1 cells. To identify the cellular target of orobol, its pharmacological effect on 395 human kinases was analyzed. Of the 395 kinases, orobol showed the lowest half maximal inhibitory concentration (IC 50 ) for Casein Kinase 1 epsilon (CK1ε), and bound to this target in an ATP-competitive manner. A computer modeling study revealed that orobol may potentially dock with the ATP-binding site of CK1ε via several hydrogen bonds and van der Waals interactions. The phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1, a substrate of CK1ε, was inhibited by orobol in isobutylmethylxanthine, dexamethasone and insulin (MDI)-induced 3T3-L1 cells. It was also found that orobol attenuates high fat diet-induced weight gain and lipid accumulation without affecting food intake in C57BL/6J mice. These findings underline orobol's potential for development as a novel agent for the prevention and treatment of obesity.