首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Single-Cell Electrical Phenotyping Enabling the Classification of Mouse Tumor Samples
  • 本地全文:下载
  • 作者:Yang Zhao ; Mei Jiang ; Deyong Chen
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep19487
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Single-cell electrical phenotyping (e.g., specific membrane capacitance (Cm) and cytoplasm conductivity (σp)) has long been regarded as potential label-free biophysical markers in tumor status evaluation. However, previous studies only reported the differentiation of tumor cell lines without classifying real tumor samples using cellular electrical properties. In this study, two types of mouse tumor models were constructed by injecting two types of tumor cell lines (A549 and H1299), respectively. Then tumor portions were retrieved for immunohistochemistry studies and single-cell electrical phenotyping based on home-developed microfluidic platforms. Immunohistochemistry results of tumor samples confirmed the adenocarcinoma and large-cell carcinoma characteristics for A549 and H1299 based tumor samples, respectively. Meanwhile, cellular Cm and σp were characterized as 2.25 ± 0.50 μF/cm2 and 0.96 ± 0.20 S/m for A549 based tumor samples (ncell = 1336, Mouse I, II, III) and 1.76 ± 0.54 μF/cm2 and 1.35 ± 0.28 S/m for H1299 based tumor samples (ncell = 1442, Mouse IV, V, VI). Significant differences in Cm and σp were observed between these two types of tumor samples, validating the feasibility of using Cm and σp for mouse tumor classification.
国家哲学社会科学文献中心版权所有