首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:Sparse deconvolution of high-density super-resolution images
  • 本地全文:下载
  • 作者:Siewert Hugelier ; Johan J. de Rooi ; Romain Bernex
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep21413
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:In wide-field super-resolution microscopy, investigating the nanoscale structure of cellular processes, and resolving fast dynamics and morphological changes in cells requires algorithms capable of working with a high-density of emissive fluorophores. Current deconvolution algorithms estimate fluorophore density by using representations of the signal that promote sparsity of the super-resolution images via an L1-norm penalty. This penalty imposes a restriction on the sum of absolute values of the estimates of emitter brightness. By implementing an L0-norm penalty--on the number of fluorophores rather than on their overall brightness--we present a penalized regression approach that can work at high-density and allows fast super-resolution imaging. We validated our approach on simulated images with densities up to 15 emitters per μm(-2) and investigated total internal reflection fluorescence (TIRF) data of mitochondria in a HEK293-T cell labeled with DAKAP-Dronpa. We demonstrated super-resolution imaging of the dynamics with a resolution down to 55 nm and a 0.5 s time sampling.
国家哲学社会科学文献中心版权所有