首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Self-arrangement of nanoparticles toward crystalline metal oxides with high surface areas and tunable 3D mesopores
  • 本地全文:下载
  • 作者:Hyung Ik Lee ; Yoon Yun Lee ; Dong-Uk Kang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep21496
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We demonstrate a new design concept where the interaction between silica nanoparticles (about 1.5 nm in diameter) with titania nanoparticles (anatase, about 4 nm or 6 nm in diameter) guides a successful formation of mesoporous titania with crystalline walls and controllable porosity. At an appropriate solution pH (~1.5, depending on the deprotonation tendencies of two types of nanoparticles), the smaller silica nanoparticles, which attach to the surface of the larger titania nanoparticles and provide a portion of inactive surface and reactive surface of titania nanoparticles, dictate the direction and the degree of condensation of the titania nanoparticles, resulting in a porous 3D framework. Further crystallization by a hydrothermal treatment and subsequent removal of silica nanoparticles result in a mesoporous titania with highly crystalline walls and tunable mesopore sizes. A simple control of the Si/Ti ratio verified the versatility of the present method through the successful control of mean pore diameter in the range of 2-35 nm and specific surface area in the ranges of 180-250 m(2) g(-1). The present synthesis method is successfully extended to other metal oxides, their mixed oxides and analogues with different particle sizes, regarding as a general method for mesoporous metal (or mixed metal) oxides.
国家哲学社会科学文献中心版权所有