首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors
  • 本地全文:下载
  • 作者:Lingping Kong ; Chuanfang Zhang ; Jitong Wang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep21177
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li(+) intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g(-1), and good rate performance of 126.7 F g(-1) at 50 A g(-1). The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g(-1) and much improved rate performance (213.4 F g(-1) at 50 A g(-1)). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g(-1)), it still exhibits a very high specific capacitance of 245.8 F g(-1), which is 65.2% retention of the initial capacitance (377.0 F g(-1) at 1 A g(-1)). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds.
国家哲学社会科学文献中心版权所有