首页    期刊浏览 2025年07月09日 星期三
登录注册

文章基本信息

  • 标题:Dose- and time-dependent effects of actomyosin inhibition on live mouse outflow resistance and aqueous drainage tissues
  • 本地全文:下载
  • 作者:MinHee K. Ko ; Eun Kyoung Kim ; Jose M. Gonzalez
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep21492
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Actomyosin contractility modulates outflow resistance of the aqueous drainage tissues and intraocular pressure, a key pathogenic factor of glaucoma. We established methodology to reliably analyze the effect of latrunculin-B (Lat-B)-induced actin depolymerization on outflow physiology in live mice. A voltage-controlled microperfusion system for delivering drugs and simultaneously analyzing outflow resistance was tested in live C57BL/6 mice. Flow rate and perfusion pressure were reproducible within a coefficient of variation of 2%. Outflow facility for phosphate-buffered saline (0.0027 ± 0.00036 μL/min/mmHg; mean ± SD) and 0.02% ethanol perfusions (Lat-B vehicle; 0.0023 ± 0.0005 μL/min/mmHg) were similar and stable over 2 hours (p > 0.1 for change), indicating absence of a 'washout' artifact seen in larger mammals. Outflow resistance changed in graded fashion, decreasing dose- and time-dependently over 2 hours for Lat-B doses of 2.5 μM (p = 0.29), 5 μM (p = 0.039) and 10 μM (p = 0.001). Resulting outflow resistance was about 10 times lower with 10 μM Lat-B than vehicle control. The filamentous actin network was decreased and structurally altered in the ciliary muscle (46 ± 5.6%) and trabecular meshwork (37 ± 8.3%) of treated eyes relative to vehicle controls (p < 0.005; 5 μM Lat-B). Mouse actomyosin contractile mechanisms are important to modulating aqueous outflow resistance, mirroring mechanisms in primates. We describe approaches to reliably probe these mechanisms in vivo.
国家哲学社会科学文献中心版权所有