首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Phosphorylation of serine residue modulates cotton Di19-1 and Di19-2 activities for responding to high salinity stress and abscisic acid signaling
  • 本地全文:下载
  • 作者:Li-Xia Qin ; Xiao-Ying Nie ; Rong Hu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep20371
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Di19 (drought-induced protein 19) family is a novel type of Cys2/His2 zinc-finger proteins. In this study, we demonstrated that cotton Di19-1 and Di19-2 (GhDi19-1/-2) proteins could be phosphorylated in vitro by the calcium-dependent protein kinase (CDPK). Mutation of Ser to Ala in N-terminus of GhDi19-1/-2 led to the altered subcellular localization of the two proteins, but the constitutively activated form (Ser was mutated to Asp) of GhDi19-1/-2 still showed the nuclear localization. GhDi19-1 / -2 overexpression transgenic Arabidopsis seedlings displayed the hypersensitivity to high salinity and abscisic acid (ABA). However, Ser site-mutated GhDi19-1(S116A) and GhDi19-2(S114A) , and Ser and Thr double sites-mutated GhDi19-1(S/T-A/A) and GhDi19-2(S/T-A/A) transgenic Arabidopsis did not show the salt- and ABA-hypersensitive phenotypes. In contrast, overexpression of Thr site-mutated GhDi19-1(T114A) and GhDi19-2(T112A) in Arabidopsis still resulted in salt- and ABA-hypersensitivity phenotypes, like GhDi19-1/-2 transgenic lines. Overexpression of GhDi19-1/-2 and their constitutively activated forms in Atcpk11 background could recover the salt- and ABA-insensitive phenotype of the mutant. Thus, our results demonstrated that Ser phosphorylation (not Thr phosphorylation) is crucial for functionally activating GhDi19-1/-2 in response to salt stress and ABA signaling during early plant development, and GhDi19-1/-2 proteins may be downstream targets of CDPKs in ABA signal pathway.
国家哲学社会科学文献中心版权所有