摘要:Larger organisms tend to live longer, have more potentially carcinogenic cells, and undergo more cell divisions. While one might intuitively expect cancer incidence to scale with body size, this assertion does not hold over the range of different mammals. Explaining this lack of correlation, so-called 'Peto's paradox' can likely increase our understanding of how cancer defense mechanisms are shaped by natural selection. Here, we study the occurrence of microsatellite in mammal genomes and observe that animals with expanded body size restrain the number of microsatellite. To take into account of higher mutation rate in the microsatellite region compared to that of genome, limiting the abundance of somatic mutations might explain how larger organisms could overcome the burden of cancer. These observations may serve as the basis to better understand how evolution has modeled protective mechanisms against cancer development.