首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:RUNX2 Mutation Impairs 1α,25-Dihydroxyvitamin D3 mediated Osteoclastogenesis in Dental Follicle Cells
  • 本地全文:下载
  • 作者:X. Z. Wang ; X. Y. Sun ; C. Y. Zhang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep24225
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Cleidocranial dysplasia (CCD), a skeletal disorder characterized by delayed permanent tooth eruption and other dental abnormalities, is caused by heterozygous RUNX2 mutations. As an osteoblast-specific transcription factor, RUNX2 plays a role in bone remodeling, tooth formation and tooth eruption. To investigate the crosstalk between RUNX2 and 1α,25-dihydroxyvitamin D3 (1α,25-(OH)2D3) in human dental follicle cells (hDFCs) during osteoclast formation, we established a co-culture system of hDFCs from CCD patient and healthy donors with peripheral blood mononuclear cells (PBMCs). Expression of the osteoclast-associated genes and the number of TRAP(+) cells were reduced in CCD hDFCs, indicating its suppressed osteoclast-inductive ability, which was reflected by the downregulated RANKL/OPG ratio. In addition, 1α,25-(OH)2D3-stimulation elevated the expression of osteoclast-related genes, as well as RANKL mRNA levels and RANKL/OPG ratios in control hDFCs. Conversely, RUNX2 mutation abolished this 1α,25-(OH)2D3-induced RANKL gene activation and osteoclast formation in CCD hDFCs. Therefore, RUNX2 haploinsufficiency impairs dental follicle-induced osteoclast formation capacity through RANKL/OPG signaling, which may be partially responsible for delayed permanent tooth eruption in CCD patients. Furthermore, this abnormality was not rescued by 1α,25-(OH)2D3 application because 1α,25-(OH)2D3-induced RANKL activation in hDFCs is mediated principally via the RUNX2-dependent pathway.
国家哲学社会科学文献中心版权所有