摘要:Wave propagation is an important characteristic for pattern formation and pattern dynamics. To date, various waves in homogeneous media have been investigated extensively and have been understood to a great extent. However, the wave behaviors in heterogeneous media have been studied and understood much less. In this work, we investigate waves that are spontaneously generated in one-dimensional heterogeneous oscillatory media governed by complex Ginzburg-Landau equations; the heterogeneity is modeled by multiple interacting homogeneous media with different system control parameters. Rich behaviors can be observed by varying the control parameters of the systems, whereas the behavior is incomparably simple in the homogeneous cases. These diverse behaviors can be fully understood and physically explained well based on three aspects: dispersion relation curves, driving-response relations, and wave competition rules in homogeneous systems. Possible applications of heterogeneity-generated waves are anticipated.