摘要:Understanding the diversity and community structure of arbuscular mycorrhizal fungi (AMF) is important for potentially optimizing their role in mining phosphorus (P) in agricultural ecosystems. Here, we conduct a comprehensive study to investigate the vertical distribution of AMF in a calcareous field and their temporal structure in maize-roots with fertilizer P application over a three-year period. The results showed that soil available-P response to P fertilization but maize yields did not. Phosphorus fertilization had no-significant effect on richness of AMF except at greater soil-depths. High P-supply reduced root colonization while optimum-P tended to increase colonization and fungal richness on all sampling occasions. Crop phenology might override P-supply in determining the community composition of active root inhabiting fungi. Significant differences in the community structure of soil AMF were observed between the controls and P treatments in surface soil and the community shift was attributable mainly to available-P, N/P and pH. Vertical distribution was related mainly to soil electrical conductivity and Na content. Our results indicate that the structure of AMF community assemblages is correlated with P fertilization, soil depth and crop phenology. Importantly, phosphorus management must be integrated with other agricultural-practices to ensure the sustainability of agricultural production in salinized soils.