首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Conformal Invariance of Graphene Sheets
  • 本地全文:下载
  • 作者:I. Giordanelli ; N. Posé ; M. Mendoza
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep22949
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Suspended graphene sheets exhibit correlated random deformations that can be studied under the framework of rough surfaces with a Hurst (roughness) exponent 0.72 ± 0.01. Here, we show that, independent of the temperature, the iso-height lines at the percolation threshold have a well-defined fractal dimension and are conformally invariant, sharing the same statistical properties as Schramm-Loewner evolution (SLEκ) curves with κ = 2.24 ± 0.07. Interestingly, iso-height lines of other rough surfaces are not necessarily conformally invariant even if they have the same Hurst exponent, e.g. random Gaussian surfaces. We have found that the distribution of the modulus of the Fourier coefficients plays an important role on this property. Our results not only introduce a new universality class and place the study of suspended graphene membranes within the theory of critical phenomena, but also provide hints on the long-standing question about the origin of conformal invariance in iso-height lines of rough surfaces.
国家哲学社会科学文献中心版权所有