摘要:Monolayer molybdenum disulfide (MoS2) has recently attracted intense interests due to its remarkable optical properties of valley-selected optical response, strong nonlinear wave mixing and photocurrent/photovoltaic generation and many corresponding potential applications. However, the nature of atomic-thin thickness of monolayer MoS2 leads to inefficient light-matter interactions and thereby hinders its optoelectronic applications. Here we report on the enhanced and controllable photo-response in MoS2 by utilizing surface plasmonic resonance based on metallic nano-antenna with characteristic lateral size of 40 × 80 nm. Our nano-antenna is designed to have one plasmonic resonance in the visible range and can enhance the MoS2 photoluminescence intensity up to 10 folds. The intensity enhancement can be effectively tuned simply by the manipulation of incident light polarization. In addition, we can also control the oscillator strength ratio between exciton and trion states by controlling polarization dependent hot carrier doping in MoS2. Our results demonstrate the possibility in controlling the photo-response in broad two-dimensional materials by well-designed nano-antenna and facilitate its coming optoelectronic applications.