首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Predicting protein thermal stability changes upon point mutations using statistical potentials: Introducing HoTMuSiC
  • 本地全文:下载
  • 作者:Fabrizio Pucci ; Raphaël Bourgeas ; Marianne Rooman
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep23257
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The accurate prediction of the impact of an amino acid substitution on the thermal stability of a protein is a central issue in protein science, and is of key relevance for the rational optimization of various bioprocesses that use enzymes in unusual conditions. Here we present one of the first computational tools to predict the change in melting temperature ΔTm upon point mutations, given the protein structure and, when available, the melting temperature Tm of the wild-type protein. The key ingredients of our model structure are standard and temperature-dependent statistical potentials, which are combined with the help of an artificial neural network. The model structure was chosen on the basis of a detailed thermodynamic analysis of the system. The parameters of the model were identified on a set of more than 1,600 mutations with experimentally measured ΔTm. The performance of our method was tested using a strict 5-fold cross-validation procedure, and was found to be significantly superior to that of competing methods. We obtained a root mean square deviation between predicted and experimental ΔTm values of 4.2 °C that reduces to 2.9 °C when ten percent outliers are removed. A webserver-based tool is freely available for non-commercial use at soft.dezyme.com.
国家哲学社会科学文献中心版权所有