摘要:Herbivores can ingest and store plant-synthesized toxic compounds in their bodies, and sequester those compounds for their own benefits. The broad bean, Vicia faba L., contains a high quantity of L-DOPA (L-3,4-dihydroxyphenylalanine), which is toxic to many insects. However, the pea aphid, Acyrthosiphon pisum, can feed on V. faba normally, whereas many other aphid species could not. In this study, we investigated how A. pisum utilizes plant-derived L-DOPA for their own benefit. L-DOPA concentrations in V. faba and A. pisum were analyzed to prove L-DOPA sequestration. L-DOPA toxicity was bioassayed using an artificial diet containing high concentrations of L-DOPA. We found that A. pisum could effectively adapt and store L-DOPA, transmit it from one generation to the next. We also found that L-DOPA sequestration verity differed in different morphs of A. pisum. After analyzing the melanization efficiency in wounds, mortality and deformity of the aphids at different concentrations of L-DOPA under ultraviolet radiation (UVA 365.0 nm for 30 min), we found that A. pisum could enhance L-DOPA assimilation for wound healing and UVA-radiation protection. Therefore, we conclude that A. pisum could acquire L-DOPA and use it to prevent UVA damage. This study reveals a successful co-evolution between A. pisum and V. faba.