首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Au Nanocage Functionalized with Ultra-small Fe3O4 Nanoparticles for Targeting T1–T2Dual MRI and CT Imaging of Tumor
  • 本地全文:下载
  • 作者:Guannan Wang ; Wei Gao ; Xuanjun Zhang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep28258
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Diagnostic approaches based on multimodal imaging of clinical noninvasive imaging (eg. MRI/CT scanner) are highly developed in recent years for accurate selection of the therapeutic regimens in critical diseases. Therefore, it is highly demanded in the development of appropriate all-in-one multimodal contrast agents (MCAs) for the MRI/CT multimodal imaging. Here a novel ideal MCAs (F-AuNC@Fe3O4) were engineered by assemble Au nanocages (Au NC) and ultra-small iron oxide nanoparticles (Fe3O4) for simultaneous T1-T2dual MRI and CT contrast imaging. In this system, the Au nanocages offer facile thiol modification and strong X-ray attenuation property for CT imaging. The ultra-small Fe3O4 nanoparticles, as excellent contrast agent, is able to provide great enhanced signal of T1- and T2-weighted MRI (r1 = 6.263 mM(-1) s(-1), r2 = 28.117 mM(-1) s(-1)) due to their ultra-refined size. After functionalization, the present MCAs nanoparticles exhibited small average size, low aggregation and excellent biocompatible. In vitro and In vivo studies revealed that the MCAs show long-term circulation time, renal clearance properties and outstanding capability of selective accumulation in tumor tissues for simultaneous CT imaging and T1- and T2-weighted MRI. Taken together, these results show that as-prepared MCAs are excellent candidates as MRI/CT multimodal imaging contrast agents.
国家哲学社会科学文献中心版权所有