首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Chronic Repression of mTOR Complex 2 Induces Changes in the Gut Microbiota of Diet-induced Obese Mice
  • 本地全文:下载
  • 作者:Mi-Ja Jung ; Jina Lee ; Na-Ri Shin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep30887
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Alterations in the gut microbiota play a crucial role in host physiology and metabolism; however, the molecular pathways underlying these changes in diet-induced obesity are unclear. Mechanistic target of rapamycin (mTOR) signaling pathway is associated with metabolic disorders such as obesity and type 2 diabetes (T2D). Therefore, we examined whether changes in the regulation of mTOR signaling induced by diet (a high-fat diet [HFD] or normal-chow diet) and/or therapeutics (resveratrol [a specific inhibitor of mTOR complex 1] or rapamycin [an inhibitor of both mTOR complex 1 and 2]) altered the composition of the gut microbiota in mice. Oral administration of resveratrol prevented glucose intolerance and fat accumulation in HFD-fed mice, whereas rapamycin significantly impaired glucose tolerance and exacerbated intestinal inflammation. The abundance of Lactococcus, Clostridium XI, Oscillibacter, and Hydrogenoanaerobacterium increased under the HFD condition; however, the abundance of these species declined after resveratrol treatment. Conversely, the abundance of unclassified Marinilabiliaceae and Turicibacter decreased in response to a HFD or rapamycin. Taken together, these results demonstrated that changes in the composition of intestinal microbiota induced by changes in mTOR activity correlate with obese and diabetic phenotypes.
国家哲学社会科学文献中心版权所有