首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Endogenous sulfur dioxide is a novel adipocyte-derived inflammatory inhibitor
  • 本地全文:下载
  • 作者:Heng Zhang ; Yaqian Huang ; Dingfang Bu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep27026
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:The present study was designed to determine whether sulfur dioxide (SO2) could be endogenously produced in adipocyte and served as a novel adipocyte-derived inflammatory inhibitor. SO2 was detected in adipose tissue using high-performance liquid chromatography with fluorescence detection. SO2 synthase aspartate aminotransferase (AAT1 and AAT2) mRNA and protein expressions in adipose tissues were measured. For in vitro study, 3T3-L1 adipocytes were cultured, infected with adenovirus carrying AAT1 gene or lentivirus carrying shRNA to AAT1, and then treated with tumor necrosis factor-α (TNF-α). We found that endogenous SO2/AAT pathway existed in adipose tissues including perivascular, perirenal, epididymal, subcutaneous and brown adipose tissue. AAT1 overexpression significantly increased SO2 production and inhibited TNF-α-induced inflammatory factors, monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) secretion from 3T3-L1 adipocytes. By contrast, AAT1 knockdown decreased SO2 production and exacerbated TNF-α-stimulated MCP-1 and IL-8 secretion. Mechanistically, AAT1 overexpression attenuated TNF-α-induced IκBα phosphorylation and degradation, and nuclear factor-κB (NF-κB) p65 phosphorylation, while AAT1 knockdown aggravated TNF-α-activated NF-κB pathway, which was blocked by SO2. NF-κB inhibitors, PDTC or Bay 11-7082, abolished excessive p65 phosphorylation and adipocyte inflammation induced by AAT1 knockdown. This is the first report to suggest that endogenous SO2 is a novel adipocyte-derived inflammatory inhibitor.
国家哲学社会科学文献中心版权所有