首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Spatially resolved photoresponse on individual ZnO nanorods: correlating morphology, defects and conductivity
  • 本地全文:下载
  • 作者:K. Bandopadhyay ; J. Mitra
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep28468
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Electrically active native point defects have a significant impact on the optical and electrical properties of ZnO nanostructures. Control of defect distribution and a detailed understanding of their physical properties are central to designing ZnO in novel functional forms and architecture, which ultimately decides device performance. Defect control is primarily achieved by either engineering nanostructure morphology by tailoring growth techniques or doping. Here, we report conducting atomic force microscopy studies of spatially resolved photoresponse properties on ZnO nanorod surfaces. The photoresponse for super-band gap, ultraviolet excitations show a direct correlation between surface morphology and photoactivity localization. Additionally, the system exhibits significant photoresponse with sub-bandgap, green illumination; the signature energy associated with the deep level oxygen vacancy states. While the local current-voltage characteristics provide evidence of multiple transport processes and quantifies the photoresponse, the local time-resolved photoresponse data evidences large variations in response times (90 ms-50 s), across the surface of a nanorod. The spatially varied photoconductance and the range in temporal response display a complex interplay of morphology, defects and connectivity that brings about the true colour of these ZnO nanostructures.
国家哲学社会科学文献中心版权所有