摘要:Renal aging is always accompanied by increased oxidative stress. Hydrogen sulfide (H2S) can be up-regulated by 50% dietary restriction (DR) for 7-day and can block mitochondrial oxidative stress. H2S production exerts a critical role in yeast, worm, and fruit fly models of DR-mediated longevity. In this study, we found that renal aging could be attenuated by 30% DR for 6-month (DR-6M) and life-long (DR-LL), but not for 6-week (DR-6W). The expressions of cystathionine-γ-lyase (CGL) and cystathionine-β- synthase (CBS) were improved by DR-6M and DR-LL. Endogenous H2S production shared the same trend with CBS and CGL, while glutathione (GSH) didn't. When comparing efficiencies of DR for different durations, more evident production of H2S was found in DR-6M and DR-LL than in DR-6W. Finally the level of oxidative stress was improved by DR-6M and DR-LL rather than by DR-6W. It concluded that aged rats had the ability to produce enough H2S on 30% DR interventions protecting against renal aging, and the effect of DR for long-term were more significant than that of DR for short-term.