首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Functional characterization of GmBZL2 (AtBZR1 like gene) reveals the conserved BR signaling regulation in Glycine max
  • 本地全文:下载
  • 作者:Yu Zhang ; Yan-Jie Zhang ; Bao-Jun Yang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep31134
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Brassinosteroids (BRs) play key roles in plant growth and development, and regulate various agricultural traits. Enhanced BR signaling leads to increased seed number and yield in Arabidopsis bzr1-1D (AtBZR1(P234L), gain-of-function mutant of the important transcription factor in BR signaling/effects). BR signal transduction pathway is well elucidated in Arabidopsis but less known in other species. Soybean is an important dicot crop producing edible oil and protein. Phylogenetic analysis reveals AtBZR1-like genes are highly conserved in angiosperm and there are 4 orthologues in soybean (GmBZL1-4). We here report the functional characterization of GmBZL2 (relatively highly expresses in flowers). The P234 site in AtBZR1 is conserved in GmBZL2 (P216) and mutation of GmBZL2(P216L) leads to GmBZL2 accumulation. GmBZL2(P216L) (GmBZL2*) in Arabidopsis results in enhanced BR signaling; including increased seed number per silique. GmBZL2* partially rescued the defects of bri1-5, further demonstrating the conserved function of GmBZL2 with AtBZR1. BR treatment promotes the accumulation, nuclear localization and dephosphorylation/phosphorylation ratio of GmBZL2, revealing that GmBZL2 activity is regulated conservatively by BR signaling. Our studies not only indicate the conserved regulatory mechanism of GmBZL2 and BR signaling pathway in soybean, but also suggest the potential application of GmBZL2 in soybean seed yield.
国家哲学社会科学文献中心版权所有