首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Wafer-scale high-resolution patterning of reduced graphene oxide films for detection of low concentration biomarkers in plasma
  • 本地全文:下载
  • 作者:Jinsik Kim ; Myung-Sic Chae ; Sung Min Lee
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep31276
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Given that reduced graphene oxide (rGO)-based biosensors allow disposable and repeatable biomarker detection at the point of care, we developed a wafer-scale rGO patterning method with mass productivity, uniformity, and high resolution by conventional micro-electro-mechanical systems (MEMS) techniques. Various rGO patterns were demonstrated with dimensions ranging from 5 μm up to several hundred μm. Manufacture of these patterns was accomplished through the optimization of dry etching conditions. The axis-homogeneity and uniformity were also measured to verify the uniform patternability in 4-inch wafer with dry etching. Over 66.2% of uniform rGO patterns, which have deviation of resistance within range of ±10%, formed the entire wafer. We selected amyloid beta (Aβ) peptides in the plasma of APP/PS1 transgenic mice as a study model and measured the peptide level by resistance changes of highly uniform rGO biosensor arrays. Aβ is a pathological hallmark of Alzheimer's disease and its plasma concentration is in the pg mL(-1) range. The sensor detected the Aβ peptides with ultra-high sensitivity; the LOD was at levels as low as 100 fg mL(-1). Our results provide biological evidences that this wafer-scale high-resolution patterning method can be used in rGO-based electrical diagnostic devices for detection of low-level protein biomarkers in biofluids.
国家哲学社会科学文献中心版权所有