首页    期刊浏览 2024年09月19日 星期四
登录注册

文章基本信息

  • 标题:Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage
  • 本地全文:下载
  • 作者:Kowsalya Palanisamy ; Ji Hyun Um ; Mihee Jeong
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep31275
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li(+) diffusion path as a consequence of its developed surface area and mesoporosity. The successive phase transformations of 3D V2O5/RGO/CNT from α-phase to ε-, δ-, γ-, and ω-phase and its structural reversibility upon Li(+) intercalation/de-intercalation are investigated by in situ XRD analysis, and the electronic and local structure reversibility around vanadium atom in 3D V2O5/RGO/CNT is observed by in situ XANES analysis. The 3D V2O5/RGO/CNT achieves a high capacity of 220 mAh g(-1) at 1 C after 80 cycles and an excellent rate capability of 100 mAh g(-1) even at a considerably high rate of 20 C. The porous 3D V2O5/RGO/CNT structure not only provides facile Li(+) diffusion into bulk but contributes to surface Li(+) storage as well, which enables the design of 3D V2O5/RGO/CNT composite to become a promising cathode architecture for high performance LIBs.
国家哲学社会科学文献中心版权所有