摘要:Given the importance of sensory innervation in tooth vitality, the identification of signals that control nerve regeneration and the cellular events they induce is essential. Previous studies demonstrated that the complement system, a major component of innate immunity and inflammation, is activated at the injured site of human carious teeth and plays an important role in dental-pulp regeneration via interaction of the active Complement C5a fragment with pulp progenitor cells. In this study, we further determined the role of the active fragment complement C5a receptor (C5aR) in dental nerve regeneration in regards to local secretion of nerve growth factor (NGF) upon carious injury. Using ELISA and AXIS co-culture systems, we demonstrate that C5aR is critically implicated in the modulation of NGF secretion by LTA-stimulated pulp fibroblasts. The NGF secretion by LTA-stimulated pulp fibroblasts, which is negatively regulated by C5aR activation, has a role in the control of the neurite outgrowth length in our axon regeneration analysis. Our data provide a scientific step forward that can guide development of future therapeutic tools for innovative and incipient interventions targeting the dentin-pulp regeneration process by linking the neurite outgrowth to human pulp fibroblast through complement system activation.