摘要:Formation of catalytic core of the U12-dependent spliceosome involves U6atac and U12 interaction with the 5' splice site and branch site regions of a U12-dependent intron, respectively. Beyond the formation of intermolecular helix I region between U6atac and U12 snRNAs, several other regions within these RNA molecules are predicted to form stem-loop structures. Our previous work demonstrated that the 3' stem-loop region of U6atac snRNA contains a U12-dependent spliceosome-specific targeting activity. Here, we show a detailed structure-function analysis and requirement of a substructure of U6atac 3' stem-loop in U12-dependent in vivo splicing. We show that the C-terminal RNA recognition motif of p65, a U12 snRNA binding protein, also binds to the distal 3' stem-loop of U6atac. By using a binary splice site mutation suppressor assay we demonstrate that p65 protein-binding apical stem-loop of U12 snRNA can be replaced by this U6atac distal 3' stem-loop. Furthermore, we tested the compatibility of the U6atac 3' end from phylogenetically distant species in a human U6atac background, to establish the evolutionary relatedness of these structures and in vivo function. In summary, we demonstrate that RNA-RNA and RNA-protein interactions in the minor spliceosome are highly plastic as compared to the major spliceosome.