首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Use of Bayesian Inference in Crystallographic Structure Refinement via Full Diffraction Profile Analysis
  • 本地全文:下载
  • 作者:Chris M. Fancher ; Zhen Han ; Igor Levin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep31625
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:A Bayesian inference method for refining crystallographic structures is presented. The distribution of model parameters is stochastically sampled using Markov chain Monte Carlo. Posterior probability distributions are constructed for all model parameters to properly quantify uncertainty by appropriately modeling the heteroskedasticity and correlation of the error structure. The proposed method is demonstrated by analyzing a National Institute of Standards and Technology silicon standard reference material. The results obtained by Bayesian inference are compared with those determined by Rietveld refinement. Posterior probability distributions of model parameters provide both estimates and uncertainties. The new method better estimates the true uncertainties in the model as compared to the Rietveld method.
国家哲学社会科学文献中心版权所有