首页    期刊浏览 2024年11月05日 星期二
登录注册

文章基本信息

  • 标题:Can computational efficiency alone drive the evolution of modularity in neural networks?
  • 本地全文:下载
  • 作者:Colin R. Tosh
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep31982
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Some biologists have abandoned the idea that computational efficiency in processing multipart tasks or input sets alone drives the evolution of modularity in biological networks. A recent study confirmed that small modular (neural) networks are relatively computationally-inefficient but large modular networks are slightly more efficient than non-modular ones. The present study determines whether these efficiency advantages with network size can drive the evolution of modularity in networks whose connective architecture can evolve. The answer is no, but the reason why is interesting. All simulations (run in a wide variety of parameter states) involving gradualistic connective evolution end in non-modular local attractors. Thus while a high performance modular attractor exists, such regions cannot be reached by gradualistic evolution. Non-gradualistic evolutionary simulations in which multi-modularity is obtained through duplication of existing architecture appear viable. Fundamentally, this study indicates that computational efficiency alone does not drive the evolution of modularity, even in large biological networks, but it may still be a viable mechanism when networks evolve by non-gradualistic means.
国家哲学社会科学文献中心版权所有