摘要:Repeated measurements can slow down (the quantum Zeno effect) or speed up (the quantum anti-Zeno effect) the temporal evolution of a quantum system. In this paper, a general treatment of the quantum Zeno and anti-Zeno effects is presented which is valid for an arbitrary system-environment model in the weak system-environment coupling regime. It is shown that the effective lifetime of a quantum state that is subjected to repeated projective measurements depends on the overlap of the spectral density of the environment and a generalized 'filter function'. This filter function depends on the system-environment Hamiltonian, the state of the environment, and the measurement being performed. Our general framework is then used to study explicitly the Zeno to anti-Zeno crossover behaviour for the spin-boson model where a single two-level system is coupled to a bosonic environment. It is possible to not only reproduce results for the usual population decay case as well as for the pure dephasing model, but to also study the regime where both decay and dephasing take place. These results are then extended to many two-level systems coupled collectively to the bosonic environment to further illustrate the importance of the correct evaluation of the effective decay rate.