摘要:An increasing number of studies have investigated the effects of nanoparticles (NPs) on microbial systems; however, few existing reports have focused on the defense mechanisms of bacteria against NPs. Whether secondary metabolism biosynthesis is a response to NP stress and contributes to the adaption of bacteria to NPs is unclear. Here, a significant induction in the surfactin production and biofilm formation were detected by adding Al2O3 NPs to the B. subtilis fermentation broth. Physiological analysis showed that Al2O3 NP stress could also affect the cell and colony morphogenesis and inhibit the motility and sporulation. Exogenously adding commercial surfactin restored the swarming motility. Additionally, a suite of toxicity assays analyzing membrane damage, cellular ROS generation, electron transport activity and membrane potential was used to determine the molecular mechanisms of toxicity of Al2O3 NPs. Furthermore, whole transcriptomic analysis was used to elucidate the mechanisms of B. subtilis adaption to Al2O3 NPs. These results revealed several mechanisms by which marine B. subtilis C01 adapt to Al2O3 NPs. Additionally, this study broadens the applications of nanomaterials and describes the important effects on secondary metabolism and multicellularity regulation by using Al2O3 NPs or other nano-products.