首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Enhanced excitability and suppression of A-type K+ currents in joint sensory neurons in a murine model of antigen-induced arthritis
  • 本地全文:下载
  • 作者:Lintao Qu ; Michael J. Caterina
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep28899
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Pain is a dominant symptom of rheumatoid arthritis (RA) and its adequate treatment represents a major unmet need. However, the cellular mechanisms that drive arthritis pain are largely unexplored. Here, we examined the changes in the activity of joint sensory neurons and the associated ionic mechanisms using an animal model of antigen-induced arthritis (AIA). Methylated-bovine serum albumin (mBSA), but not vehicle challenge, in the ankle of previously immunized mice produced time-dependent symptoms of arthritis, including joint inflammation, primary mechanical hyperalgesia in the ipsilateral ankle, and secondary mechanical and heat hyperalgesia in the ipsilateral hindpaw. In vivo electrophysiological recordings revealed that Dil-labeled joint sensory neurons in AIA mice exhibited a greater incidence of spontaneous activity, mechanically evoked after-discharges, and/or increased responses to mechanical stimulation of their receptive fields, compared to control animals. Whole-cell recordings in vitro showed that AIA enhanced the excitability of joint sensory neurons. These signs of neuronal hyperexcitability were associated with a significant reduction in the density of A-type K(+) currents. Thus, our data suggest that neuronal hyperexcitability, brought about in part by reduced A-type K(+) currents, may contribute to pain-related behaviors that accompany antigen-induced arthritis and/or other antigen-mediated diseases.
国家哲学社会科学文献中心版权所有