摘要:Low hydrophilicity of graphene is one of the major obstacles for biomaterials application. To create some hydrophilic groups on graphene is addressed this issue. Herein, COOH(+) ion implantation modified graphene (COOH(+)/graphene) and COOH functionalized graphene were designed by physical ion implantation and chemical methods, respectively. The structure and surface properties of COOH(+)/graphene and COOH functionalized graphene were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and contact angle measurement. Compared with graphene, COOH(+)/graphene and COOH functionalized graphene revealed improvement of cytocompatibility, including in vitro cell viability and morphology. More importantly, COOH(+)/graphene exhibited better improvement effects than functionalized graphene. For instance, COOH(+)/graphene with 1 × 10(18) ions/cm(2) showed the best cell-viability, proliferation and stretching. This study demonstrated that ion implantation can better improve the cytocompatibility of the graphene.