首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Functional characterization of a csoR-cueA divergon in Bradyrhizobium liaoningense CCNWSX0360, involved in copper, zinc and cadmium cotolerance
  • 本地全文:下载
  • 作者:Jianqiang Liang ; Mingzhe Zhang ; Mingmei Lu
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep35155
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Random mutagenesis in a symbiotic nitrogen-fixing Bradyrhizobium liaoningense CCNWSX0360 (Bln0360) using Tn5 identified five copper (Cu) resistance-related genes. They were functionally sorted into three groups: transmembrane transport (cueA and tolC); oxidation (copA); and protection of the membrane barrier (lptE and ctpA). The gene cueA, together with the upstream csoR (Cu-sensitive operon repressor), constituted a csoR-cueA divergon which plays a crucial role in Cu homeostasis. Deletion of cueA decreased the Cu tolerance of cells, and complementation of this mutant restored comparable Cu resistance to that of the wild-type. Transcriptional and fusion expression analysis demonstrated that csoR-cueA divergon was up-regulated by both the monovalent Cu(+) and divalent Zn(2+)/Cd(2+), and negatively regulated by transcriptional repressor CsoR, via a bidirectional promoter. Deletion of csoR renders the cell hyper-resistant to Cu, Zn and Cd. Although predicted to encode a Cu transporting P-type ATPase (CueA), cueA also conferred resistance to zinc and cadmium; two putative N-MBDs (N-terminal metal binding domains) of CueA were required for the Cu/Zn/Cd tolerance. Moreover, cueA is needed for nodulation competitiveness of B. liaoningense in Cu rich conditions. Together, the results demonstrated a crucial role for the csoR-cueA divergon as a component of the multiple-metal resistance machinery in B. liaoningense.
国家哲学社会科学文献中心版权所有