摘要:Myocardial ischemia/reperfusion (I/R) injury detrimentally alters the prognosis of patients undergoing revascularization after acute myocardial infarction. Our previous study demonstrated that NF-κB-induced autophagy plays a detrimental role in cardiac I/R injury using a rabbit myocardial I/R model. In this study, we sought to explore the specific mechanism of this autophagy-mediated cell damage in an in vitro simulated ischemia/reperfusion (sI/R) model using human umbilical vein endothelial cells. Our current study demonstrates that simulated I/R induces autophagy in a p65-Beclin 1-dependent manner, which can be suppressed with the inhibition of NF-κB. Furthermore, rapamycin which promotes autophagy, exacerbates sI/R-induced cell death. While 3-methyladenine rescues cell damage. Our data thus suggest that I/R promotes NF-κB p65 activity mediated Beclin 1-mediated autophagic flux, thereby exacerbating myocardial injury.