摘要:Malaria eradication will require a combination of vector control, chemotherapy and an easily administered vaccine. Sterile immunity can be elicited in humans by immunization with sporozoites, the infective stage injected by bite of the mosquito vector, however, whole parasite vaccines present formidable logistical challenges for production, storage and administration. The "gold standard" for infectious disease eradiation, the Smallpox Eradication Programme, utilized mass immunization using the skin scarification (SS) route. SS may more closely mimic the natural route of malaria infection initiated by sporozoites injected by mosquito bite which elicits both neutralizing antibodies and protective cell mediated immunity. We investigated the potential of SS immunization using a malaria repeat peptide containing a protective B cell epitope of Plasmodium falciparum, the most lethal human species, and delivery vehicles containing TLR agonists as adjuvants. In a murine model, SS immunization with peptide in combination with TLR-7/8 and -9 agonists elicited high levels of systemic sporozoite neutralizing antibody, Th1- type CD4+ T cells and resistance to challenge by bites of infected mosquitoes. SS provides the potential to elicit humoral immunity to target Plasmodium at multiple stages of its complex life cycle.