首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Establishment of a translational endothelial cell model using directed differentiation of induced pluripotent stem cells from Cynomolgus monkey
  • 本地全文:下载
  • 作者:Eva C. Thoma ; Tobias Heckel ; David Keller
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep35830
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Due to their broad differentiation potential, pluripotent stem cells (PSCs) offer a promising approach for generating relevant cellular models for various applications. While human PSC-based cellular models are already advanced, similar systems for non-human primates (NHPs) are still lacking. However, as NHPs are the most appropriate animals for evaluating the safety of many novel pharmaceuticals, the availability of in vitro systems would be extremely useful to bridge the gap between cellular and animal models. Here, we present a NHP in vitro endothelial cell system using induced pluripotent stem cells (IPSCs) from Cynomolgus monkey (Macaca fascicularis). Based on an adapted protocol for human IPSCs, we directly differentiated macaque IPSCs into endothelial cells under chemically defined conditions. The resulting endothelial cells can be enriched using immuno-magnetic cell sorting and display endothelial marker expression and function. RNA sequencing revealed that the differentiation process closely resembled vasculogenesis. Moreover, we showed that endothelial cells derived from macaque and human IPSCs are highly similar with respect to gene expression patterns and key endothelial functions, such as inflammatory responses. These data demonstrate the power of IPSC differentiation technology to generate defined cell types for use as translational in vitro models to compare cell type-specific responses across species.
国家哲学社会科学文献中心版权所有