首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series
  • 本地全文:下载
  • 作者:Zhong-Ke Gao ; Qing Cai ; Yu-Xuan Yang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2016
  • 卷号:6
  • 期号:1
  • DOI:10.1038/srep35622
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Visibility graph has established itself as a powerful tool for analyzing time series. We in this paper develop a novel multiscale limited penetrable horizontal visibility graph (MLPHVG). We use nonlinear time series from two typical complex systems, i.e., EEG signals and two-phase flow signals, to demonstrate the effectiveness of our method. Combining MLPHVG and support vector machine, we detect epileptic seizures from the EEG signals recorded from healthy subjects and epilepsy patients and the classification accuracy is 100%. In addition, we derive MLPHVGs from oil-water two-phase flow signals and find that the average clustering coefficient at different scales allows faithfully identifying and characterizing three typical oil-water flow patterns. These findings render our MLPHVG method particularly useful for analyzing nonlinear time series from the perspective of multiscale network analysis.
国家哲学社会科学文献中心版权所有